

Physiological Acuity Modelling with (Ugly) Temporal Clinical Data

Marzyeh Ghassemi CSAIL PhD Candidate

Massachusetts Institute of Technology

Agenda

- Techniques
 - Topic Models (LDA)
 - Gaussian Processes (GP)
- Applications
 - KDD 2014 Unfolding Physiological State: Mortality Modeling in Intensive Care Units
 - AAAI 2015 A Multivariate Timeseries Modeling Approach to Severity of Illness Assessment and Forecasting in ICU with Sparse, Heterogeneous Clinical Data

Agenda

- Techniques
 - Topic Models (LDA)
 - Gaussian Processes (GP)
- Applications
 - KDD 2014 Unfolding Physiological State: Mortality Modeling in Intensive Care Units
 - AAAI 2015 A Multivariate Timeseries Modeling Approach to Severity of Illness Assessment and Forecasting in ICU with Sparse, Heterogeneous Clinical Data

Topic Model Tutorial

- Content is from:
 - Steyvers & Griffiths 2006 paper
 - Blei ICML 2012 Tutorial

Topic Models – Popularity is great

- All the right cliques:
 - Directed graphical models
 - Conjugate priors and nonconjugate priors
 - Time series modeling
 - Modeling with graphs
 - Hierarchical Bayesian methods
 - Approximate posterior inference (MCMC, variational methods)
 - Exploratory and descriptive data analysis
 - Model selection and Bayesian nonparametric methods
 - Mixed membership models
 - Prediction from sparse and noisy inputs

Data/Discovery Process

How to Get the "Latent"?

Graphical Models ~ Matrix Decomp ~ Tensor Decomp

Intuition: Documents are made of Topics

- Every document is a mixture of topics
- Every topic is a distribution over words
- Every word is a draw from a topic

Topics 0.04 gene 0.02 dna genetic 0.01 life 0.02 evolve 0.01 organism 0.01 0.04 brain neuron 0.02 0.01 nerve 0.02 data number 0.02 computer 0.01

. . .

Circles & Boxes

• Observe: N words over D documents $\bigcup_{W_{d,n}}$

• Infer:

• Per-word topic assignment $Z_{d,n}$

 θ_d

 β_k

- Per-doc topic proportion
- Corpus topic distribution

- Dirichlet Priors Give:
 - Sparsity α
 - Exclusivity η

LDA – Latent Dirichlet Allocation

• We observe words, we infer everything else, with our assumed structure

"Dirich-let" It On Too Thick?

- What are $\alpha \& \eta$?
- Each hyperparameter is a prior "observation count":
 - α is the number of times a <u>topic</u> is sampled in a <u>document</u> before having observed anything from the document.
 - η is the number of times <u>words</u> are sampled from a <u>topic</u> before any words are observed from the corpus.

Figure 3. Illustrating the symmetric Dirichlet distribution for three topics on a two-dimensional simplex. Darker colors indicate higher probability. Left: $\alpha = 4$. Right: $\alpha = 2$.

Why Do We Need Inference?

- Want the posterior distribution p(z|w) assignment of word to topics
- We could estimate θ_d , β_k using EM, or marginalize out with approx. inf.

- Many Approximate Methods
 - Sampling –*randomly* resample a *specific* tagging for each word, given specific taggings of all other words, and a specific value for θ.
 - Variational Inference deterministically update the distribution over taggings for each word, given distributions over the taggings for other words and a distribution over θ.

Agenda

- Techniques
 - Topic Models (LDA)
 - Gaussian Processes (GP)
- Applications
 - KDD 2014 Unfolding Physiological State: Mortality Modeling in Intensive Care Units
 - AAAI 2015 A Multivariate Timeseries Modeling Approach to Severity of Illness Assessment and Forecasting in ICU with Sparse, Heterogeneous Clinical Data

GP Tutorial

- Content is from:
 - Phillip Henning MLSS 2013 Tutorial
 - Murphy's Machine Learning Book (and code!)

GPs?

- GPs define a prior over functions, which can be converted into a posterior over functions once we've seen some data.
- Assumes p(f(x1), ... f(xn)) is jointly Gaussian, with some mean and covariance given by
- Computation is O(N³).
- GPs can be thought of as a Bayesian alternative to sparser/faster kernel methods (SVM), with probabilistic outputs.

Multivariate Gaussian

$$\mathcal{N}(x;\mu,\Sigma) = \frac{1}{(2\pi)^{N/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(x-\mu)^{\mathsf{T}} \Sigma^{-1}(x-\mu)\right]$$

•
$$x, \mu \in \mathbb{R}^N, \Sigma \in \mathbb{R}^{N \times N}$$

Σ is positive semidefinite.

Why do we like them?

- Closure under multiplication
- Closure under linear maps
- Closure under marginalization

 $\mathcal{N}(x; a, A)\mathcal{N}(x; b, B) = \mathcal{N}(x; c, C)\mathcal{N}(a; b, A + B)$ $C \coloneqq (A^{-1} + B^{-1})^{-1} \qquad c \coloneqq C(A^{-1}a + B^{-1}b)$ $p(z) = \mathcal{N}(z; \mu, \Sigma)$ $p(Az) = \mathcal{N}(Az, A\mu, A\Sigma A^{\mathsf{T}})$

Closure under conditioning

$$\int \mathcal{N}\left[\begin{pmatrix}x\\y\end{pmatrix}; \begin{pmatrix}\mu_x\\\mu_y\end{pmatrix}, \begin{pmatrix}\Sigma_{xx} & \Sigma_{xy}\\\Sigma_{yx} & \Sigma_{yy}\end{pmatrix}\right] dy = \mathcal{N}(x; \mu_x, \Sigma_{xx})$$

$$p(x|y) = \frac{p(x,y)}{p(y)} = \mathcal{N}\left(x; \mu_x + \Sigma_{xy}\Sigma_{yy}^{-1}(y - \mu_y), \Sigma_{xx} - \Sigma_{xy}\Sigma_{yy}^{-1}\Sigma_{yx}\right)$$

1.1.1.1

What can we do?

given $y \in \mathbb{R}^N$, p(y | f), what's f?

Linear Regression

GPs

Is this hard??

```
% prior on w
      = 2:
                                                                            % number of features
F
phi = @(a)(bsxfun(@power,a,0:F-1));
                                                                                  \% \phi(a) = [1; a]
      = zeros(F, 1);
mu
                                                                              p(w) = \mathcal{N}(\mu, \Sigma)
Sigma = eye(F);
% prior on f(x)
      = 100; x = linspace(-6,6,n)';
                                                                                 % 'test' points
n
phix = phi(x);
                                                                                 % features of x
      = phix * mu;
m
                                                                           % p(f_x) = \mathcal{N}(m, k_{xx})
kxx = phix * Sigma * phix';
      = bsxfun(@plus,m,chol(kxx + 1.0e-8 * eye(n))' * randn(n,3)); % samples from prior
S
                                                               % marginal stddev, for plotting
stdpi = sqrt(diag(kxx));
load('data.mat'); N = length(Y);
                                                                               % gives Y,X,sigma
% prior on Y = f_X + \epsilon
phiX = phi(X);
                                                                              % features of data
      = phiX * mu;
М
                                                                         % p(f_X) = \mathcal{N}(M, k_X X)
kXX = phiX * Sigma * phiX';
                                                                   % p(Y) = \mathcal{N}(M, k_{XX} + \sigma^2 I)
      = kXX + sigma^2 * eye(N);
G
                                                               % most expensive step: \mathcal{O}(N^3)
      = chol(G);
R
                                                                           % \operatorname{cov}(f_x, f_X) = k_{xX}
kxX = phix * Sigma * phiX';
      = kxX / R:
                                                                       % pre-compute for re-use
A
                                           % p(f_x | Y) = \mathcal{N}(m + k_{xX}(k_{XX} + \sigma^2 I)^{-1}(Y - M),
mpost = m + A * (R' \setminus (Y-M));
                                                              k_{xx} - k_{xX}(k_{XX} + \sigma^2 I)^{-1}k_{Xx}
vpost = kxx - A * A';
spost = bsxfun(@plus,mpost,chol(vpost + 1.0e-8 * eye(n))' * randn(n,3));
                                                                                      % samples
stdpo = sqrt(diag(vpost));
                                                               % marginal stddev, for plotting
```


More realistic data

 $f(x) = \phi_x^{\mathsf{T}} w \qquad ?$

Cubic Regression

$$f(x) = \phi(x)^{\mathsf{T}} w \qquad \phi(x) = \begin{pmatrix} 1 & x & x.^2 & x.^3 \end{pmatrix}^{\mathsf{T}}$$

Not any harder.

```
F = 4 \begin{bmatrix} F &= 2; \\ phi &= @(a)(bsxfun(@power,a,0:F-1)); \\ mu &= zeros(F,1); \end{bmatrix}
                                                                                           % number of features
                                                                                                   \% \phi(a) = [1; a]
                                                                                               % p(w) = \mathcal{N}(\mu, \Sigma)
             Sigma = eye(F);
             % prior on f(x)
             n = 100; x = linspace(-6,6,n)';
                                                                                                 % 'test' points
                                                                                                 % features of x
             phix = phi(x);
             m = phix * mu;
             kxx = phix * Sigma * phix';
                                                                                           % p(f_x) = \mathcal{N}(m, k_{xx})
                    = bsxfun(@plus,m,chol(kxx + 1.0e-8 * eye(n))' * randn(n,3)); % samples from prior
             S
             stdpi = sqrt(diag(kxx));
                                                                               % marginal stddev, for plotting
             load('data.mat'); N = length(Y);
                                                                                               % gives Y,X,sigma
             % prior on Y = f_X + \epsilon
             phiX = phi(X);
                                                                                              % features of data
             M
                    = phiX * mu;
                                                                                         % p(f_X) = \mathcal{N}(M, k_{XX})
             kXX = phiX * Sigma * phiX';
                                                                                   % p(Y) = \mathcal{N}(M, k_{XX} + \sigma^2 I)
                  = kXX + sigma^2 * eye(N);
             G
                                                                               % most expensive step: \mathcal{O}(N^3)
                    = chol(G);
             R
                                                                                           % \operatorname{cov}(f_x, f_X) = k_{xX}
             kxX = phix * Sigma * phiX';
                    = kxX / R:
                                                                                       % pre-compute for re-use
             A
                                                           % p(f_x | Y) = \mathcal{N}(m + k_{xX}(k_{XX} + \sigma^2 I)^{-1}(Y - M)),
             mpost = m + A * (R' \setminus (Y-M));
                                                                              k_{xx} - k_{xX}(k_{XX} + \sigma^2 I)^{-1}k_{Xx})
             vpost = kxx - A * A';
             spost = bsxfun(@plus,mpost,chol(vpost + 1.0e-8 * eye(n))' * randn(n,3)); % samples
                                                                               % marginal stddev, for plotting
             stdpo = sqrt(diag(vpost));
```


Septic Regression

Fourier Regression

 $\phi(x) = (\cos(x) \quad \cos(2x) \quad \cos(3x) \quad \dots \quad \sin(x) \quad \sin(2x) \quad \dots)^{\mathsf{T}}$

Step Regression

$$\phi(x) = -1 + 2 \left(\theta(x-8) \quad \theta(8-x) \quad \theta(x-7) \quad \theta(7-x) \quad \dots \right)^{\mathsf{T}}$$

How many features should we use?

 $p(f_x | y, \phi_X) = \mathcal{N}(f_x; \phi_x^{\mathsf{T}} \mu + \phi_x^{\mathsf{T}} \Sigma \phi_X (\phi_X^{\mathsf{T}} \Sigma \phi_X + \sigma^2 I)^{-1} (y - \phi_X^{\mathsf{T}} \mu),$ $\phi_x^{\mathsf{T}} \Sigma \phi_x - \phi_x^{\mathsf{T}} \Sigma \phi_X (\phi_X^{\mathsf{T}} \Sigma \phi_X + \sigma^2 I)^{-1} \phi_X^{\mathsf{T}} \Sigma \phi_x)$

all objects involving ϕ are of the form

- $\phi^{\mathsf{T}}\mu$ the mean function
- $\phi^{\mathsf{T}} \Sigma \phi$ the kernel

once these are known, cost is independent of the number of features remember the code:

М	= phiX * mu;	
m	= phix * mu;	
kXX	<pre>= phiX * Sigma * phiX';</pre>	$% p(f_X) = \mathcal{N}(M, k_{XX})$
kxx	= phix * Sigma * phix';	$% p(f_x) = \mathcal{N}(m, k_{xx})$
kxХ	= phix * Sigma * phiX';	$(\cos(f_x, f_X) = k_{xX})$

Pre-compute the kernel

% prior F = 2; % number of features phi = @(a)(bsxfun(@power,a,0:F)); $\% \phi(a) = [1; a]$ = @(a,b)(phi(a)' * phi(b)); k % kernel = @(a)(zeros(size(a,1))); % mean function mu % belief on f(x)= 100; x = linspace(-6,6,n)'; % 'test' points n = mu(x): m $% p(f_x) = \mathcal{N}(m, k_{xx})$ kxx = k(x,x);= bsxfun(@plus,m,chol(kxx + 1.0e-8 * eye(n))' * randn(n,3)); % samples from prior S % marginal stddev, for plotting stdpi = sqrt(diag(kxx)); load('data.mat'); N = length(Y); % gives Y,X,sigma % prior on $Y = f_X + \epsilon$ M = mu(X): $% p(f_X) = \mathcal{N}(M, k_X X)$ kXX = k(X,X);% $p(Y) = \mathcal{N}(M, k_{XX} + \sigma^2 I)$ = kXX + sigma^2 * eye(N); G % most expensive step: $\mathcal{O}(N^3)$ = chol(G);R $% \operatorname{cov}(f_x, f_X) = k_{xX}$ kxX = k(x,X);= kxX / R;% pre-compute for re-use A $% p(f_x | Y) = \mathcal{N}(m + k_{xX}(k_{XX} + \sigma^2 I)^{-1}(Y - M)),$ $mpost = m + A * (R' \setminus (Y-M));$ $k_{xx} - k_{xX}(k_{XX} + \sigma^2 I)^{-1}k_{Xx})$ vpost = kxx - A * A': spost = bsxfun(@plus,mpost,chol(vpost + 1.0e-8 * eye(n))' * randn(n,3)); % samples % marginal stddev, for plotting stdpo = sqrt(diag(vpost));

Kernalization

Definition

A function $k : \mathbb{X} \times \mathbb{X} \to \mathbb{R}$ is a Mercer kernel if, for any finite collection $X = [x_1, \dots, x_N]$, the matrix $k_{XX} \in \mathbb{R}^{N \times N}$ with elements $k_{XX,(i,j)} = k(x_i, x_j)$ is positive semidefinite.

Lemma

Any kernel that can be written as

$$k(x,x') = \oint \phi_{\ell}(x)\phi_{\ell}(x') d\ell$$

is a Mercer kernel. (a) **Proof:** $\forall X \in \mathbb{X}^N, v \in \mathbb{R}^N$

(assuming integral over positive set)

$$v^{\mathsf{T}}k_{XX}v = \oint_{i} \sum_{i}^{N} v_{i}\phi_{\ell}(x_{i})\sum_{j}^{N} v_{j}\phi_{\ell}(x_{j}) d\ell = \oint_{i} \left[\sum_{i} v_{i}\phi_{\ell}(x_{i})\right]^{2} d\ell \geq 0 \quad \Box$$

Gaussian Process Priors

Definition

A function $k : \mathbb{X} \times \mathbb{X} \to \mathbb{R}$ is a Mercer kernel if, for any finite collection $X = [x_1, \dots, x_N]$, the matrix $k_{XX} \in \mathbb{R}^{N \times N}$ with elements $k_{XX,(i,j)} = k(x_i, x_j)$ is positive semidefinite.

Definition

Let $\mu : \mathbb{X} \to \mathbb{R}$ be any function, $k : \mathbb{X} \times \mathbb{X} \to \mathbb{R}$ be a Mercer kernel. A Gaussian process $p(f) = \mathcal{GP}(f; \mu, k)$ is a probability distribution over the function $f : \mathbb{X} \to \mathbb{R}$, such that every finite restriction to function values $f_X := [f_{x_1}, \dots, f_{x_N}]$ is a Gaussian distribution $p(f_X) = \mathcal{N}(f_X; \mu_X, k_{XX})$.

E.g. Kernelization of Step Functions

aka. the Wiener process

Applying It

Summary

Gaussians are closed under

- linear projection / marginalization / sum rule
- linear restriction / conditioning / product rule

they provide the linear algebra of inference combine with nonlinear features ϕ , get nonlinear regression in fact, number of features can be infinite (nonparametric) Gaussian process regression

Agenda

- Techniques
 - Topic Models (LDA)
 - Gaussian Processes (GP)
- Applications
 - KDD 2014 Unfolding Physiological State: Mortality Modeling in Intensive Care Units
 - AAAI 2015 A Multivariate Timeseries Modeling Approach to Severity of Illness Assessment and Forecasting in ICU with Sparse, Heterogeneous Clinical Data

We've Got A Really Big Problem

- ICUs are busy, and carestaff are often inundated with information.
- Which patient needs attention?

What Do We Already Know?

- In 2009, 118 validated mortality prediction tools published.**
 - Modest accuracy
 - Large variability
 - Models based on numeric, waveform, or snapshot data
 - Snapshot data (e.g. ICD9) is not "realtime" or actionable
- A good predictive rule must be*:
 - Accurate in a wide variety of clinical settings
 - Easy to incorporate into routine clinical practice
 - Improves prognostic accuracy

^{*} Grady, Deborah, and Seth A. Berkowitz. "Why is a good clinical prediction rule so hard to find?." Archives of internal medicine 171.19 (2011): 1701-1702.

^{**} Siontis, George CM, Ioanna Tzoulaki, and John PA Ioannidis. "Predicting death: an empirical evaluation of predictive tools for mortality." Archives of internal medicine 171.19 (2011): 1721-1726.

Unfolding Physiological State: Mortality Modeling in Intensive Care Units

• KDD 2014

 Marzyeh Ghassemi, Tristan Naumann, Finale Doshi-Velez, Nicole Brimmer, Rohit Joshi, Anna Rumshisky, Peter Szolovits

Lots of Data Sources

Every Cat Needs a Plan

- Create forward-facing models every 12 hours that only use data what would have actually been available, or "realtime" data.
- Incorporate clinical text with snapshot data.
- Measure performance on mortality prediction in-hospital, at 30days and 1-year post-discharge.

Hypothesis: Text information decomposed into topic features adds value to snapshot data.

Model Setup: Overview

Model Setup: Data

- Use 19,308 adult patient records
- Gather per-patient snapshot information
- Collect 473,764 notes
 - Use only first admissions
 - Ignore discharge summaries

Model Setup: Latent Topic Features

	Topic #	Top Ten Words	Possible Topic
In-Hospital Mortality	27	name family neuro care noted status plan stitle dr remains	Discussion of end-of- life care
	15	intubated vent ett secretions propofol abg respiratory resp care sedated	Respiratory failure
	7	thick secretions vent trach resp tf tube coarse cont suctioned	Respiratory infection
	5	liver renal hepatic ascites dialysis failure flow transplant portal ultrasound	Renal failure
Hospital Survival	1	cabg pain ct artery coronary valve post wires chest sp neo	Cardiovascular Surgery
	40	left fracture ap views reason clip hip distal lat report joint	Fracture
	16	gtt insulin bs lasix endo monitor mg am plan iv	Chronic diabetes
1 Year	3	picc line name procedure catheter vein tip placement clip access	PICC line insertion
Mortality	4	biliary mass duct metastatic bile cancer left ca tumor clip	Cancer treatment
	45	catheter name procedure contrast wire french placed needle advanced clip	Coronary catheterization

Model Setup: Time-varying Topics

• Normalized topic distribution (50 features)

Model Setup: Admission Baseline

• Age, gender, admitting SAPS I score (3 features)

Model Setup: Combined Time-varying

• Admission and topic features (53 features)

SVM

Model

Model Setup: Retrospective Topics

• Retrospective Topic Model:

• Retrospective note features from entire patient stay (50 features).

KDD 2014 Model Setup: Retrospective Topics + Admission

• Retrospective Topic + Admission Model:

SVM

Model

• Combined topic and admission feature (53 features).

SVM

Model

Model Setup: Retrospective Derived

Retrospective Derived Features Model:

 Age, gender, admitting/min/max/final{SAPS I} and Elixhauser co-morbidity scores (36 features).

Model Setup: Retrospective Topics + Derived

• Combine all retrospective (86 features).

Mortality Prediction Results

We Solved A Problem, Everything Is Awesome

- Text Data Is Valuable
 - A combination of latent topic features and snapshot features worked best
- Long-term Predictions Are Harder
 - Combinations of features were best able to per over first 24 hours.
- "Realtime" Models Are More Valuable
 - Retrospective models out-performed continuou actionable.

A Multivariate Timeseries Modeling Approach to Severity of Illness Assessment and Forecasting in ICU with Sparse, Heterogeneous Clinical Data

- AAAI 2015
- Marzyeh Ghassemi, Marco A. F. Pimentel, Tristan Naumann, Thomas Brennan, David A. Clifton, Peter Szolovits, Mengling Feng

Noisy, Sparse, Irregularly Sampled Data

 We use MTGPs to model the movements between and within multiple signals. This transforms a variety of irregularly-sampled clinical data into a new latent space using the MTGP hyperparameter

A sample function with 4 tasks. Tasks 1 and 2 were correlated; 4 was anti-correlated with 1 and 2; and 3 was uncorrelated.

STGP predictions on all tasks. Mean absolute prediction error (over the 4 tasks) doesn't use signal interaction.

MTGP predictions on all tasks. Predictions improved by taking into account the correlation between the different tasks

Projection to Latent Space

θ provides a new latent search space to examine and evaluate the similarity of any two given multi-dimensional functions.

But What Are These Hyperparameters?

- We use the squared exponential kernel, so each signal's θ govern the function input/output scale, and the inter-signal θ correspond to the correlation between the different outputs.
- These parameters are:
 - 1. a means of representing the functional behavior
 - 2. a set of observations learned directly from data; and
 - 3. generalizable to any type of longitudinal data, including categorical and numerical types

$$\begin{split} \mathbf{K}_{MT}(\mathbf{X}_n,\mathbf{l},\boldsymbol{\theta}_c,\boldsymbol{\theta}_t) &= \mathbf{K}_c(\mathbf{l},\boldsymbol{\theta}_c) \otimes \mathbf{K}_t(\mathbf{X}_n,\boldsymbol{\theta}_t) \\ \mathbf{K}_t &= \theta_A^2 \exp\left\{-\frac{\parallel x - x' \parallel^2}{2\theta_L^2}\right\} \quad \mathbf{K}_c = \mathbf{L}\mathbf{L}^{\mathsf{T}}, \quad \mathbf{L} = \begin{bmatrix} \theta_{c,1} & 0 & \dots & 0 \\ \theta_{c,2} & \theta_{c,3} & 0 \\ \vdots & \ddots & \vdots \\ \theta_{c,k-m+2} & \theta_{c,k-m+2} & \dots & \theta_{c,k} \end{bmatrix}$$

Incorporating Text Data

- Perform a "pre-projection step"
- Hyperparamter Features
- er $\theta_{\rm L} \quad \theta_{\rm A} \quad \theta_{\rm c,1}$

 $\theta_{\rm c,6}$

...

- Clinical notes are transformed into timeseries using LDA
- New set of topic proportion timeseries are fitted using the MTGPs
- Inferred hyperparameters θ are derived, projecting into the new latent space.

Case Studies

- Estimating Signal in Traumatic Brain Injury Patients
- Mortality Prediction Using Clinical Progress Notes

AAAI 2015

Estimating Signal in Traumatic Brain Injury

- ICP and ABP data were collected from 35 TBI patients who were monitored for more than 24-hours in a Neuro-ICU.
- Our goal was to forecast the MAP and ICP signals as well as estimate cerebrovascular pressure reactivity (PRx)

Signal	Measure	STGP	MTGP
ICP	RMSE	0.91	0.69
ICI	MSLL	0.6	0.45
ABP	RMSE	2.77	1.98
ADI	MSLL	0.65	0.55
PRx-PRx*	RMSE	-	0.09

AAAI 2015

Mortality Prediction Using Clinical Notes

- 10,202 patients with 313,461 notes.
- Chose the 9 topics with a posterior likelihood above or below 5% of the population baseline likelihood across topics.
- Using MTGP hyperparameters as additional classification features also gave us improved results for mortality prediction (0.812 vs 0.788 AUC).

	Top Five Words	Possible Topic	
In-hospital Mortality	liver, renal, hepatic, ascites,	Renal Failure	
	dialysis		
	thick, secretions, vent, trach,	Respiratory infec-	
	resp	tion	
	remains, family, gtt, line,	Systematic organ	
	map	failure	
	increased, temp, hr, pt, cc	Multiple physio-	
		logical changes	
	intubated, vent, ett, secre-	Respiratory failure	
	tions, propofol		
	name, family, neuro, care,	Discussion of end-	
	noted	of-life care	
Survival	cabg, pain, ct, artery, coro-	Cardio-vascular	
	nary	surgery	
	chest, pneumothorax, tube,		
	reason, clip		
	pain, co, denies, oriented,	Responsive patient	
	neuro		

Features	Hospital Mortality	1-Year Mortality
SAPS-I	0.702	0.500
Ave. Topics	0.759	0.653
SAPS-I + MTGP	0.775	0.624
Ave. Topics + MTGP	0.788	0.673
SAPS-I + Ave. Topics + MTGP	0.812	0.686

Acknowledgements

Thanks to:

Intel Science and Technology Center for Big Data NIH NLM Biomedical Institute Research Training

